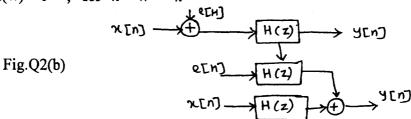
(10 Marks)

USN

M.Tech. Degree Examination, June/July 2011 Modern Digital Signal Processing

Time: 3 hrs.

Max. Marks:100


Note: Answer any FIVE full questions.

- 1 a. Define z-transform. List and prove the properties of z-transform.
 - b. Consider the linear difference equation y[n] 2.5 y[n-1] + y[n-2] = x[n-1]
 - i) Determine the transfer function H(z)
 - ii) The given difference equation might represent a causal, anticausal or non causal system for each case determine the difference equation, the transfer function (with ROC) and whether the system is stable or not. (10 Marks)
- 2 a. Explain the prediction based sampling methods with necessary diagrams. (10 Marks)
 - b. In the system below, let the signal x[n] be affected by some random error e[n] as shown in Fig.Q2(b). The error is white zero mean, with variance $\sigma_e^2 = 1.0$. Determine the variance of the error e[n] after the filter for each of the following filters e[n].
 - i) An ideal low pass filter H(z) with bandwidth $\pi/4$.

ii)
$$H(z) = \frac{z}{z - 0.5}$$

iii) $y[n] = \frac{1}{4} (s[n] + s[n-1] + s[n-2] + s[n-3])$ with s[n] = x[n] + e[n]

iv) $H(w) = e^{-|w|}$, for $-\pi < w < +\pi$ (10 Marks)

- 3 a. Differentiate between FIR and IIR systems with suitable examples. (08 Marks)
 - b. Explain the design of FIR filters using windowing technique with appropriate expression and sketches. (12 Marks)
- 4 a. Explain the elementary operations of the digital filter implementation. (10 Marks)
 - b. Explain a general state space representation of an IIR filter. (10 Marks)
- 5 a. Explain the analysis of downsampling and upsampling. (10 Marks)
 - b. Write a short note on the application of multirate DSP. (10 Marks)
- 6 a. Explain the maximally decimated DFT filter banks. (10 Marks)
 - b. Explain the time division multiple access (TDMA) and frequency division multiplexing techniques in Transmultiplexers. (10 Marks)
- Determine conditions on the four impulse responses g[n], h[n], $\tilde{g}[n]$, $\tilde{h}[n]$ in the time domain as well as in the transform domain. (20 Marks)
- 8 a. Explain the lattice implementation of orthonormal filter banks. (12 Marks)
 - b. Write short note on wavelet transform. (08 Marks)

* * * * *

